Capillary wave turbulence on a spherical fluid surface in low gravity
نویسندگان
چکیده
منابع مشابه
Capillary wave turbulence on a spherical fluid surface in low gravity
We report the observation of capillary wave turbulence on the surface of a fluid layer in a low-gravity environment. In such conditions, the fluid covers all the internal surface of the spherical container which is submitted to random forcing. The surface wave amplitude displays power-law spectrum over two decades in frequency, corresponding to wavelength from mm to a few cm. This spectrum is f...
متن کاملObservation of gravity-capillary wave turbulence.
We report the observation of the crossover between gravity and capillary wave turbulence on the surface of mercury. The probability density functions of the turbulent wave height are found to be asymmetric and thus non-Gaussian. The surface wave height displays power-law spectra in both regimes. In the capillary region, the exponent is in fair agreement with weak turbulence theory. In the gravi...
متن کاملGravity surface wave turbulence in a laboratory flume
We present experimental results for water wave turbulence excited by piston-like programmed wavemakers in a water flume with dimensions 6 × 12 × 1.5 meters. Our main finding is that for a wide range of excitation amplitudes the energy spectrum has a power-law scaling, Eω ∼ ω−ν . These scalings were achieved in up to one-decade wide frequency range, which is significantly wider than the range av...
متن کاملGravity wave turbulence in a laboratory flume.
We present an experimental study of the statistics of surface gravity wave turbulence in a flume of a horizontal size 12 x 6 m. For a wide range of amplitudes the wave energy spectrum was found to scale as Eomega approximately omega(-nu) in a frequency range of up to one decade. However, nu appears to be nonuniversal: it depends on the wave intensity and ranges from about 6 to 4. We discuss our...
متن کاملDecay of capillary wave turbulence.
We report on the observation of freely decaying capillary wave turbulence on the surface of a fluid. The capillary wave turbulence spectrum decay is found to be self-similar in time with the same power law exponent as the one found in the stationary regime, in agreement with weak turbulence predictions. The amplitude of all Fourier modes are found to decrease exponentially with time at the same...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPL (Europhysics Letters)
سال: 2009
ISSN: 0295-5075,1286-4854
DOI: 10.1209/0295-5075/86/14002